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Abstract. Tropical ecosystems contribute significantly to global emissions of methane (CH4) and landscape 17 

topography influences the rate of CH4 emissions from wet tropical forest soils. However, extreme events such as 18 

drought can alter normal topographic patterns of emissions. Here we explain the dynamics of CH4 emissions during 19 

normal and drought conditions across a catena in the Luquillo Experimental Forest, Puerto Rico. Valley soils served 20 

as the major source of CH4 emissions in a normal precipitation year (2016), but drought recovery in 2015 resulted in 21 

dramatic pulses in CH4 emissions from all topographic positions. Geochemical parameters including dissolved organic 22 

carbon (C) (ridge >> slope >> valley), acetate (ridge  slope > valley), and soil pH (valley >> slope >> ridge), and 23 

meteorological parameters like soil moisture (valley > slope = ridge) and oxygen (O2) concentrations (slope = ridge > 24 

valley) varied across the catena. During the drought, soil moisture decreased in the slope and ridge and O2 25 

concentrations increased in the valley. We simulated the dynamics of CH4 emissions with the Microbial Model for 26 

Methane Dynamics-Dual Arrhenius and Michaelis Menten (M3D-DAMM) which couples a microbial functional 27 

group CH4 model with a diffusivity module for solute and gas transport within soil microsites. Contrasting patterns of 28 

soil moisture, O2, acetate, and associated changes in soil pH with topography regulated simulated CH4 emissions, but 29 

emissions were also altered by rate-limited diffusion in soil microsites. Changes in simulated available substrate for 30 

CH4 production (acetate, CO2, and H2) and oxidation (O2 and CH4) increased the predicted biomass of methanotrophs 31 

during the drought event and methanogens during drought recovery, which in turn affected net emissions of CH4. A 32 

variance-based sensitivity analysis suggested that parameters related to acetotrophic methanogenesis and 33 

methanotrophy were most critical to simulate net CH4 emissions. This study enhanced the predictive capability for 34 

CH4 emissions associated with complex topography and drought in wet tropical forest soils. 35 
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1 Introduction 42 

Wet tropical forest soils contribute significantly to global emissions of methane (CH4; Pachauri et al., 2014). Although 43 

net emissions of CH4 from upland soils are infrequent in temperate climates, studies show that CH4 emissions are 44 

common in wet tropical forests (Cattânio et al., 2002; Keller and Matson, 1994; Silver et al., 1999; Teh et al., 2005; 45 

Verchot et al., 2000). Landscape topography can strongly influence the proportions of CH4 production and oxidation 46 

in mountainous tropical regions, affecting net emissions (Silver et al., 1999; O’Connell et al., 2018). Climate, and 47 

specifically patterns in rainfall, also affect emissions from tropical forests. Climate change may increase the frequency 48 

and severity of extreme rainfall and drought events, altering the spatial and temporal dynamics of CH4 emissions 49 

through changes in redox dynamics and substrate availability (Silver et al., 1999; Chadwick et al., 2016; Neelin et al., 50 

2006). Thus, accurately estimating CH4 emissions under a variety of climatic and topographic conditions is important 51 

for predicting soil carbon-climate feedbacks in the humid tropical biome. 52 

Several studies have reported the effect of drought events on biogenic CH4 emissions across different wet tropical 53 

forest soils. For example, Aronson et al. (2019) demonstrated that the lower soil moisture conditions during 2015-16 54 

El Niño event increased atmospheric consumption of soil CH4 in a wet tropical forest soil of Costa Rica. Similarly, a 55 

large-scale, 5-year throughfall exclusion experiment in a moist tropical forest in Brazil also reported increased 56 

consumption of atmospheric CH4 under the drought treatment, followed by a recovery of CH4 emissions to pre-57 

treatment values after the experiment ceased (Davidson et al., 2004, 2008). Using rainout shelters, Wood and Silver 58 

(2012) found spatial variability in CH4 oxidation rates, with an increase of 480% uptake in valleys in Puerto Rico. 59 

Recently, O’Connell et al. (2018) reported increasing consumption of atmospheric CH4 during a Caribbean drought 60 

event, followed by increased production of CH4 after the drought was over. The post-drought net CH4 emission rates 61 

were higher than the pre-drought emissions, such that the benefits to atmospheric radiation imparted by the lowered 62 

emissions during the drought were eliminated. The sharp differences between pre- and post-drought emissions 63 

suggested that drought affected the balance of methanogenesis and methanotrophy in the soils, but the study lacked 64 

analysis of the microbial community's contributions to these two separate processes. 65 

The concept of “microsites” inside soil aggregates or within soil micropores can help explain the coexistence of 66 

oxidative and reductive processes in soils (Silver et al., 1999; Teh and Silver, 2006). Oxygen can remain inside 67 

micropores during saturated conditions, and likewise, anoxic conditions can persist in microsites under extended 68 

droughts. The observed rapid flush of CH4 in response to a post-drought wetting event (O’Connell et al., 2018) 69 

suggests methanogenesis continued during the drought in soil microsites, despite low soil moisture and high O2 supply 70 

(Andersen et al., 1998; Bosse and Frenzel, 1998; Teh et al., 2005; von Fischer and Hedin, 2002). Finely-textured soils 71 

common to the humid tropics can facilitate the co-existence of reduced solute and gas species with O2 because the rate 72 
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of solute and gaseous exchanges is controlled by diffusion into and out of microaggregates (Hall and Silver, 2013; 73 

Liptzin et al., 2010; Silver et al., 2013).  74 

To explain the diverse observations of CH4 emissions during and after drought across a wet tropical forest catena, we 75 

hypothesized that explicit representations of diffusion into microsites for gas and solute transport would be required. 76 

To account for the balance of methanotrophy and methanogenesis, separate microbial functional groups for CH4 77 

production and oxidation would need to be defined. Therefore, a microbial functional group model for CH4 production 78 

and consumption (Xu et al., 2015) was merged with a soil diffusivity module (Davidson et al., 2012; Sihi et al., 2018) 79 

to simulate the dynamics of net in situ CH4 emissions from soil microsites (Sihi et al., 2020). This module considers 80 

three key mechanisms for CH4 production and consumption: acetoclastic methanogenesis (production from acetate) 81 

and hydrogenotrophic methanogenesis (production from H2 and CO2), and aerobic methanotrophy (oxidation of CH4 82 

and reduction of O2) (Fig. 1). Here we report a modeling experiment to explain contrasting patterns of observed CH4 83 

emissions following a severe drought in 2015 and we provide new data to describe CH4 emissions under non-drought 84 

conditions in 2016. We explicitly account for changes in soil moisture, O2, acetate, and microbial functional group 85 

dynamics within soil microsites in the model. 86 

2 Materials and methods  87 

2.1 Study site 88 

The study was conducted across a wet tropical forest catena near the El Verde Research Station in the Luquillo 89 

Experimental Forest in northeastern Puerto Rico in the United States (Latitude 18°19'16.83" N, Longitude 90 

65°49'10.13" W). The site is part of a National Science Foundation Long-Term Ecological Research (LTER) and 91 

Critical Zone Observatory (CZO) site and is also part of the U.S. Department of Energy’s Next Generation Ecosystem 92 

Experiment-Tropics. The mean annual temperature at the site is 23 °C and the long-term mean rainfall is ~3500 mm 93 

yr-1 with low seasonality (Scatena, 1989). Inter-annual variability of rainfall ranges between 2600 mm yr-1 to 5800 94 

mm yr-1, sometimes associated with extreme rainfall events (~100 mm day-1) from Caribbean storm systems (Heartsill-95 

Scalley et al., 2007). 96 

The landscape at the field site is highly dissected with short catenas, characterized by a land surface distance of < 30 97 

m from ridgetop to valley (O’Connell et al., 2018). This study partitioned sampling along a catena from ridgetop, 98 

slope, and valley topographic positions (Fig. S1). The soils are clay-rich Ultisols, which were derived from basaltic 99 

and andesitic volcanoclastic parent materials. Soils are acidic (average pH is 4.3 and 5.1 in ridge and valley 100 

topographic positions, respectively, Fig. 2). The valley soils have ~30% clay and ~15% sand, while the ridge soils 101 

have ~22% clay and ~30% sand (Brenner et al., 2019). The soils contain high concentrations of iron (Fe) and aluminum 102 

(Al) (oxy)hydroxides where their relative concentrations vary along the catena and differences in Fe speciation are 103 

associated with variable redox conditions (Hall and Silver, 2013, 2015). The forest composition is relatively diverse 104 

with the mature Tabonuco (Dacryodes excelsa Vahl) and Sierra palm (Prestoea montana) trees being most dominant 105 

(Scatena and Lugo, 1995; Wadsworth et al., 1951). 106 
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2.2 Soil and porewater sampling 107 

To initialize the model, soil samples were collected quarterly from the ridgetop, slope, and valley positions from 0-10 108 

cm depth. The soil pH was determined using a 1:2 ratio of soil:solution using a glass electrode with 0.005 M CaCl2 as 109 

the equilibrated soil solution (Thomas, 1996; Sihi et al. 2020b). Porewater samples were collected approximately 110 

weekly using macro-rhizon soil water samplers (Rhizosphere Research Products B.V.; Wageningen, The Netherlands) 111 

installed at 10- and 30-cm depths in the ridge, slope, and valley topographic positions (Sihi et al., 2020c). The soil 112 

water samples were analyzed for organic acid concentrations (acetate) using High Performance Liquid 113 

Chromatography (Dionex ICS-5000+ Thermo-Fisher Waltham, MA, USA) with the Dionex IonPac AS11-HC column 114 

using a potassium hydroxide eluent and gradient elution. The samples were analyzed for total dissolved organic carbon 115 

(DOC) using a Shimadzu total organic C analyzer (Shimadzu TOC-L CSH/CSN Analyzer Baltimore, MD, USA). The 116 

soil and porewater measurements were conducted in 2017-2018 (the number of samples n ranged between 20 to 35, 117 

Fig. 2) to initialize different model parameters for the catena, because measurements were not available for 2015-118 

2016. To that end, the chemical data were used as the reference characteristics of the bulk soil, and the temporal 119 

evolution of DOC, acetate, and soil pH at the microsites were calculated using probability distributions of soil moisture 120 

and O2 across soil microsites over the two-year measurement window. Soil bulk density and particle density values 121 

were taken from O’Connell et al. (2018). 122 

2.3 In situ methane flux and soil driver measurements   123 

Campbell Scientific CS 655 soil moisture and temperature sensors and Apogee SO-110 O2 sensors were co-located 124 

with soil gas flux chambers at 15 cm soil depth along the catena, each with five replications along five transects (Fig. 125 

S1) (O’Connell et al. 2018). Following Liptzin et al. (2011), soil O2 sensors were installed in gas-permeable soil 126 

equilibration chambers (295 cm3). Data from these sensors were collected hourly using Campbell Scientific CR10000 127 

data loggers and AM16/32B multiplexers (Campbell Scientific, Logan, UT, USA), which were processed using site-128 

based calibration equations.  129 

Soil CH4 emissions along the catena were measured during 2015 (February 26 to December 23, O’Connell et al. 2018; 130 

Silver, 2018) and 2016 (April 5 to July 18) (Sihi et al., 2020d) using a Cavity Ring-Down Spectroscopy gas analyzer 131 

(Picarro G2508, Santa Clara, CA, USA) connected to 12 automated eosAC closed dynamic soil chambers (Pumpanen 132 

et al., 2004) using a multiplexer (Eosense Inc., Dartmouth, Nova Scotia, Canada). Data for soil CH4 emissions were 133 

processed using eosAnalyze-AC (v3.5.0) software followed by a series of quality control protocols (O’Connell et al. 134 

2018). We used daily average values of drivers (soil temperature, soil moisture, and O2 concentrations) and CH4 135 

emissions in the modeling exercise. See O’Connell et al (2018) for more information on the soil sensor, chamber 136 

arrays, and the data analysis pipeline.  137 

The data from the 2015 Caribbean drought was partitioned into four distinct periods (O’Connell et al., 2018): (1) pre-138 

drought from day of year (DOY) 57 to 115 (dark gray on Fig. 3), (2) the drought from DOY 116 to 236 (medium gray 139 

on Fig. 3), (3) drought recovery from DOY 237 to 328 (light gray on Fig. 3), and (4) post-drought from DOY 329 to 140 

354 (white on Fig. 3). Total precipitation during the drought period was 700 mm in 2015 and 1088 mm during the 141 
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same time frame in 2016 (Meteorological data from El Verde Field Station: NADP Tower, available at 142 

https://luq.lter.network/data/luqmetadata127). 143 

2.4 Modelling approach   144 

2.4.1 Microbial functional group model for methane production and oxidation 145 

An existing microbial functional group-based model for CH4 production and consumption (Xu et al., 2015) was 146 

adapted for this research (Sihi, 2020). As shown in Fig. 1, acetate and H2/CO2 represent substrate [Substratefunci
] 147 

(nmole cm-3) for acetotrophic and hydrogenotrophic methanogenesis reactions, respectively. On the other hand, CH4 148 

and O2 concentrations represent substrate for the methanotrophy reaction. The overall reaction rates are represented 149 

as:  150 

Reactionratei
=Biomassfunci

×
GrowRfunc i

Efficiencyfunci

×
[Substratefunc1…n

]

[Substratefunc1…n
]+KMfunc1…n

×  f(T) ×  f(pH)   (1) 151 

where Reactionratei  (in nmole cm-3 hr-1) is rate of CH4 production and/or consumption under variable substrate 152 

concentrations. Biomassfunci  (nmole cm-3) represents microbial functional groups: acetoclastic methanogens, 153 

hydrogenotrophic methanogens, and aerobic methanotrophs, respectively. Growth rates and substrate use efficiencies 154 

of microbial functional groups are represented as GrowRfunci(hr-1) and Efficiencyfunci (unitless), respectively (Table 155 

1). The substrate limitation on CH4 production is imposed by assuming a Michaelis-Menten relationship between the 156 

substrates and the half-saturation constants for CH4 production and oxidation, KMfunc1…n (nmole cm-3). Although 157 

minor contributions of iron dependent anaerobic CH4 oxidation to net CH4 emissions can be expected in our study site 158 

(Ettwig et al., 2016), we did not represent this process here.   159 

The extent of change in Biomassfunci
  (dBiomassfunci

) is controlled by the balance between  Growthfunci
 and 160 

Deathfunci
 following: 161 

dBiomassfunci

dtfunci

=Growthfunci − Deathfunci        (2) 162 

Growthfunc=Efficiencyfunci  ×  Reactionratei       (3) 163 

where Growthfunci is calculated as a multiplicative function of Efficiencyfunci and the Reactionratei, 164 

Deathfunci=DeadRfunci  ×  Biomassfunci        (4) 165 

and Deathfunci is a function of DeadRfunci (death rate, Table 1) and Biomassfunci (microbial biomass). 166 

All rate equations were modified by the scalers for temperature, f(T) and pH, f(pH) functions, described below. We 167 

represented the temperature effect, f(T), using a classic Q10 function: 168 

f(T) =  Q10i

 Temperaturesoil − Temperaturereference  
10         (5) 169 

We represented the pH effect, f(pH), based on Cao et al (1995): 170 

f(pH) =  
(pH− pHminimum)∗(pH− pHmaximum)

(pH− pHminimum)∗(pH− pHmaximum)−(pH− pHoptimum)2       (6) 171 

where we set the minimum, optimum, and maximum soil pH values to 4, 7, and 10, respectively. Following Xu et al. 172 

(2015), we considered the contribution of acetate to pH as follows: 173 
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pH =  −1 ∗ log(10pHinitial + 4.2E − 9 ∗ Acetate)       (7) 174 

Although other mechanisms to alter soil pH are present at the site, e.g., Fe reduction and oxidation (Teh et al., 2005; 175 

Hall and Silver, 2013), these are not considered in the model at this time. Calibrated values of GrowRfunci
,  176 

DeadRfunci, Efficiencyfunci, KMfunci, and Q10i
 are presented in Table 1.  177 

2.4.2 Diffusion module for gaseous and solute transport in soil profile and across soil-air boundary 178 

In order to account for the diffusion of gases across the soil-air boundary and solutes (e.g. acetate) through soil water 179 

films (Fig. 1), we added the diffusion module of the Dual Arrhenius and Michaelis Menten (DAMM) model (Davidson 180 

et al., 2012; Sihi, 2020; Sihi et al., 2018, 2020a) to the existing microbial functional group model, which we refer to 181 

as M3D-DAMM. We calculated initial concentration of gases like O2, H2, CO2, and CH4, [Gasconc], (unit: V V-1), as a 182 

function of a unitless diffusion coefficient of gas in air (Dgas), volume fraction of gas in air (V V-1), and gas diffusivity 183 

(a4/3 ) as follows:  184 

 [Gasconc] = Dgas× atmospheric concentration ×a4/3         (8)  185 

where a4/3 represents the tortuosity of diffusion pathway for gases as a function of soil water (SoilM) and temperature 186 

(SoilT): 187 

a4/3 = (Porosity −
SoilM

100
)

4/3

× (
SoilT+273.15

293.15
)

1.75

         (9)  188 

where the air-filled porosity (a) was calculated by subtracting the volume fraction of soil moisture (V V-1) from total 189 

porosity. Porosity was calculated as:  190 

(1- 
Bulk density

Particle density
)           (10) 191 

The exponent of 4/3 accounts for diffusivity of gases through porous media (Davidson and Trumbore., 1995). The 192 

exponent of 1.75 represents the temperature response of gaseous diffusion (Massman, 1998; Davidson et al., 2006).  193 

Following Davidson et al. (2012), the value used for gaseous diffusivity coefficient (Dgas) was calculated based on an 194 

assumed boundary condition such that the concentration of gaseous substrates in the soil pore space would be 195 

equivalent to the volume fraction of gases in air under completely dry conditions. 196 

We assumed another boundary condition to determine the value of the aqueous diffusion coefficient, D liq, such that 197 

soluble substrates like acetate would be available at the enzymatic reaction site under conditions with saturating soil 198 

water content (Davidson et al., 2012):  199 

Dliq =
1

Porosity3             (11) 200 

We represented soluble substrates (acetate) diffused through a soil water film as Aqueous − substrate (µmole L-1), 201 

which we calculated as follows:  202 

Aqueous − substrateav = Aqueous − substrate × Dliq × (
SoilM

100
)3       (12)  203 

where the (
SoilM

100
)3 term represents the diffusion rate of aqueous substrates to the enzymatic active site (Papendick and 204 

Campbell, 1981). Concentrations of acetate in the aqueous phase (µmole L-1) were obtained from the measurements 205 

across the catena averaged by depths (10 and 30 cm) of rhizon samplers.  206 
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We calculated CH4 emissions, CH4emission  (unit: µmole m-2 hr-1), as a function of concentration ( [CH4conc] ), 207 

production (CH4prod), and oxidation (CH4ox) of CH4, multiplied by the equivalent “depth” (set to 15 cm) (for cm-3 208 

volume to cm-2 area conversion) and 104 (for m2 to cm2 conversion) as follows:  209 

CH4emission = [CH4conc] + (CH4prod − CH4ox) × 104 × depth          (13) 210 

We simulated production, consumption, and diffusion processes within soil microsites using a log-normal probability 211 

distribution function of soil moisture and available C (Fig. 1). The average values of individual processes across 212 

simulated microsites (represented by “i”) represent the reaction in the bulk soil, which we constrained using the net 213 

measured CH4 emissions (detailed information and equations on microsite probability distribution function can be 214 

found in Sihi et al., 2020a).  215 

Bulk soilaverage =
∑Frequencyi×[microsite]i

Total microsites
          (14) 216 

We directly adapted the probability distribution function of soil moisture and C from Sihi et al. (2020a), which 217 

constrained values of Frequencyi of soil microsites. We also set the number of total microsites to 10,000, which 218 

represents the envelope of simulated microsites in Sihi et al. (2020a).   219 

2.4.3 Sensitivity Analysis 220 

We evaluated the sensitivity of model parameters with a global variance-based sensitivity analysis using the R-221 

multisensi package. This method uses a global sensitivity index (0 < GSI < 1) to determine the sensitivity of CH4 222 

emissions to model parameter values (Bidot et al., 2018). To that end, parameters with high GSI values may explain 223 

high temporal variations of the observed CH4 emissions and those with low GSI values are insignificant to reproduce 224 

the temporal dynamics of CH4 emissions.  225 

2.4.4 Statistical Analysis 226 

We used R (version 3.5.1) for statistical analyses, modeling, and visualization purposes (R Core Team, 2018). 227 

Statistical analyses and figures were produced using R-ggstatsplot (Patil, 2018) and R-ggplot2 (Wickham, 2016) 228 

packages. Differences in soil and porewater chemistry across the catena were compared using robust t-test. 229 

Correlograms for soil temperature, soil moisture, O2, and soil CH4 emissions were created using adjusted Holm 230 

correlation coefficients. All statistical analyses were conducted at the 5% significance level. We implemented the 231 

M3D-DAMM model using R-FME package (Soetaert, 2016).  232 

3 Results   233 

3.1 Observational dynamics of soil biogeochemistry   234 

Soil and porewater chemistry varied along the catena (Fig. 2). Dissolved organic carbon (DOC) values followed the 235 

trend of ridge >> slope >> valley (p  0.001). Soil DOC concentrations (mean ± SE) were 0.55 ± 0.10, 0.30 ± 0.03, 236 

and 0.18 ± 0.03 mg g-1 in ridge, slope, and valley soils, respectively. Organic acid (acetate) concentrations were 237 

significantly higher in the ridge (6.57 ± 1.48 µmole L-1) and slope (6.42 ± 2.19 µmole L-1) than in the valley (1.80 ± 238 
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0.20 µmole L-1) (p = 0.003). Soil pH followed the trend of valley >> slope >> ridge (p < 0.001). Average soil pH 239 

ranged from 4.25 ± 0.11 in the ridge, to 4.49 ± 0.08 in the slope, and to 5.05 ± 0.09 in the valley.        240 

Soil moisture and soil O2 concentrations were distinctly different in the drought year (2015) compared to 2016. The 241 

drought in 2015 decreased soil moisture in the slope and ridge soils and increased O2 concentrations in the valley soils 242 

(Fig. 3) (also see O'Connell et al., 2018). Generally, average soil moisture was higher in the valley (0.47 ± 0.05 in 243 

2015 and 0.51 ± 0.01 v v-1 in 2016) as compared to the ridge (0.31 ± 0.12 in 2015 and 0.39 ± 0.03 v v-1 in 2016) and 244 

slope (0.30 ± 0.16 in 2015 and 0.41 ± 0.04 v v-1 in 2016). Average O2 concentrations were generally lower in the 245 

valley (11.54 ± 5.94 in 2015 and 6.30 ± 2.96 % in 2016) as compared to the ridge (18.37 ± 0.72 in 2015 and 17.52 ± 246 

0.42 % in 2016) and slope (18.09 ± 1.22 in 2015 and 16.89 ± 0.58 % in 2016). After the drought ended, the recovery 247 

of soil moisture in the ridge and slope soils proceeded more quickly than the recovery of O2 concentrations in the 248 

valley soils (Fig. 3). Soil temperature ranges were averaged across the topographic gradient and were similar in both 249 

years (average was 21.58 ± 1.88 in 2015 and 22.97 ± 1.04 °C in 2016). 250 

In 2016, net CH4 emissions were generally positive in the valley and were marginally negative in the ridge and slope 251 

(Fig. 4). The dynamics of CH4 were very different following the 2015 drought, resulting in net positive CH4 emissions 252 

in the post-drought period for all topographic positions (Fig. 3) (as described in more detail in O’Connell et al. 2018). 253 

The magnitude of CH4 emissions was greater in the valley, followed by the slope and then the ridge.  254 

The strength of the relationships between net CH4 emissions and soil temperature, moisture, and O2 concentrations 255 

were contingent on both topographic position and year (2015 vs 2016) (Fig. 5). For example, the relation between 256 

CH4 emissions and soil moisture was stronger in 2016 (normal year) than in 2015 (drought year). The correlation 257 

between CH4 emissions and O2 concentrations was stronger and more negative in 2016 than 2015. Correlations 258 

between soil moisture and O2 concentrations were negative and stronger in 2016. Correlation coefficients between 259 

soil O2 concentrations and CH4 emissions were negative and strongest for valley soils and lowest for ridge soils in 260 

2015, but were uncorrelated in 2016 for ridge and slope soils (Fig. S2).   261 

3.2 Model simulations of methanogenesis and methanotrophy   262 

In general, there was little bias in the relationships between the observed and simulated CH4 emissions (Fig. 6). The 263 

model explained 72% and 67% of the variation in soil CH4 emissions for 2015 and 2016, respectively, although the 264 

model performance varied across the catena (Figs. 6, S3, S4). Overall, simulated CH4 emissions captured the trend of 265 

valley >> slope  ridge for 2016. The model also captured the dramatically different dynamics of field CH4 emissions 266 

as a function of topography during and after the 2015 drought. Net positive CH4 emissions were simulated in the 267 

drought recovery and post-drought periods in the ridge and slope in 2015, while net negative emissions were simulated 268 

in the other times for these landscape positions. Additionally, simulated net CH4 emissions were decreased during the 269 

drought and drought recovery in the valley soils, as well as the strong net CH4 emissions in the valley soils in the post-270 

drought period.   271 

The ridge and slope positions were more similar to each other than to the valley soils. Simulated biomass of 272 

acetoclastic methanogens and hydrogenotrophic methanogens decreased strongly, resulting in decreased production 273 

of acetate and hydrogen during the 2015 drought in the ridge and slope positions (Figs. S5, S6). Gross CH4 production 274 
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therefore decreased during these time periods (Fig. S7). Simultaneously, as soil moisture decreased, simulated 275 

methanotrophic biomass increased during the drought (Fig. S5). The simulated biomass of both acetoclastic 276 

methanogens and hydrogenotrophic methanogens increased dramatically in the ridge and slope soils during drought 277 

recovery (acetoclastic methanogens: 3.3 and 5.3 times higher than drought period for ridge and slope, respectively; 278 

hydrogenotrophic methanogens: 6.1 and 12 times higher than drought period for ridge and slope, respectively) and 279 

post-drought (acetoclastic methanogens: 5.2 and 8.8 times higher than drought period for ridge and slope, respectively; 280 

hydrogenotrophic methanogens: 12 and 24 times higher than drought period for ridge and slope, respectively) period. 281 

Concomitantly, production of acetate and H2 was much higher in the ridge and slope soils during the drought recovery 282 

(acetate: 1.8 and 2.4 times than drought period for ridge and slope soils, respectively; H2: 3.5 and 6.0 times than 283 

drought period for ridge and slope soils, respectively) and the post-drought (acetate: 2.3 and 3.2 times than drought 284 

period for ridge and slope, respectively; H2: 5.6 and 10  times than drought period for ridge and slope, respectively) 285 

period. Together, gross CH4 production in the ridge and slope soils was significantly higher during the drought 286 

recovery (1.9 and 2.5 times than drought period for ridge and slope, respectively) and post-drought periods (3.4 and 287 

4.6 times than drought period for ridge and slope, respectively) compared to the drought (Fig. S7). Simulated 288 

production of acetate was increased that also lowered soil pH values during drought recovery (Fig. S6), with a more 289 

pronounced effect in the ridge and slope soils. Additionally, simulated methanotrophic biomass and CH4 oxidation 290 

decreased during the post-drought period (Figs. S5, S7), which is the same time period during which net CH4 291 

production increased strongly. 292 

For the valley soils, simulated values of acetoclastic methanogens and concomitant acetate production increased 293 

during the 2015 drought (Figs. S5, S6). During the drought recovery and post-drought period, both acetoclastic 294 

methanogens and acetate production decreased in the valley, while hydrogenotrophic methanogens and H2 production 295 

were stable. Gross CH4 production, however, remained relatively flat during the drought event in the valley, and only 296 

increased during the post-drought period (Fig. S7). Simulated CH4 oxidation and methanotrophic biomass, on the 297 

other hand, increased dramatically during the drought and drought recovery period (Figs. S5, S7), and then decreased 298 

strongly during the post-drought period. However, simulated methanotrophic biomass was smaller in the valley soils 299 

compared to the ridge and slope soils. Methane oxidation by methanotrophs exerted strong controls on simulated net 300 

CH4 emissions, not only in the valley but in all the topographic positions.      301 

3.3 The influence of microsites on net methane emissions  302 

Concomitant with decreased soil moisture, the simulated diffusion of gases (O2, H2) was enhanced during the drought 303 

event in 2015, while diffusion of the solute (acetate) was dramatically decreased, particularly for the ridge and slope 304 

soils (Fig. S8). However, reduction in soil moisture can inhibit fermentative hydrogen production (Cabrol et al., 2017). 305 

Consequently, simulated gross CH4 production through hydrogenotrophic and acetoclastic pathways both decreased 306 

during the drought event for the ridge and slope positions (Figs. S7, S9). As soil moisture increased during the drought 307 

recovery and post-drought periods, the diffusion of gases decreased, and diffusion of acetate increased in the ridge 308 

and slope soils (Fig. S8). Consequently, simulated values of gross CH4 production increased and gross CH4 oxidation 309 
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decreased during drought recovery and the post-drought period (Fig. S7). These factors likely contribute to the large 310 

pulses of net CH4 emissions during the post-drought period for ridge and slope positions (Fig. 3). 311 

Overall, the valley soils were relatively insensitive to changes in the rate of diffusion of either gases or solutes (Fig. 312 

S8), most likely because soil moisture remained relatively stable, regardless of drought conditions (Fig. 3). The lower 313 

sand and higher clay contents in the valley soils (Brenner et al. 2019), as well as the lower topographic position, likely 314 

caused the valley soils to remain wetter than the slope and ridge soils. Therefore, simulated values of gross CH4 315 

production were fairly stable in the valley soils (Fig. S7) during the drought and drought recovery period.   316 

Simulated production, oxidation, and net flux of CH4 was further modified by reactions occurring within soil 317 

microsites. For example, during the drought (~DOY 200 in 2015), gross CH4 production was more frequent in soil 318 

microsites in the valley compared to the slope and ridge (Fig. 7). Simulated values of CH4 oxidation were much greater 319 

in microsites in the slope and ridge positions, so the net CH4 emissions were positive in the valley soils and negative 320 

in the ridge and slope positions. During the 2015 post-drought period (DOY 345), the frequency of CH4 production 321 

was much greater in all topographic positions compared to pre-drought period (DOY 200), and it was also more 322 

enhanced in the valley soils compared to the slope and ridge. Thus, net positive CH4 emissions were observed in all 323 

topographic positions in the post-drought period (Fig. 3). Methane oxidation at DOY 345 was much greater in the 324 

ridge and slope compared to the valley, similar to predictions at DOY 200. Therefore, the prominent CH4 emissions 325 

from all three topographic positions were primarily due to increased production (CH4 production on DOY 345 was 326 

150, 248, and 80 % higher than DOY 200 in ridge, slope, and valley, respectively) rather than decreased oxidation 327 

(CH4 oxidation was 32, 31, and 43 % lower on DOY 345 than DOY 200 in ridge, slope, and valley, respectively), 328 

which agrees with previous studies in our site (Teh et al., 2005, 2008; von Fischer and Hedin, 2002)  329 

Diffusion into microsites strongly affected the concentrations of gases and solutes experienced by microbes, and 330 

differences as a function of topographic position were again predicted. Acetate production and diffusion were 331 

enhanced in valley soils during the drought, when compared to the slope and ridge soils (Fig. S10). The H2 production 332 

was also enhanced in the valley soils during the drought, but the wetter valley soils experienced lower rates of H2 333 

diffusion compared to the ridge and slope soils. Increases in O2 diffusion were also apparent in the ridge and slope 334 

soils during the drought, and those increases were greater than in the valley soils. During the post-drought period, 335 

however, the frequency of H2 and O2 diffusion was much greater for the ridge soils compared to the valley soils (Fig. 336 

S10).   337 

Of all parameters, the most sensitive ones were those that controlled CH4 production through the acetoclastic pathway, 338 

followed by the parameters related to CH4 oxidation (Fig. 8). The GSI values for parameters related to acetoclastic 339 

methanogenesis and methanotrophy ranged between 0.25 - 0.75, whereas the corresponding GSI values for 340 

hydrogenotrophic methanogenesis were always < 0.1.  341 

4 Discussion   342 

4.1 Mechanisms governing net methane emissions   343 

Although the initial concentrations of available C for fermentation (i.e. DOC) and substrate for acetoclastic 344 

methanogenesis (i.e. acetate) in the bulk soil followed the trend of ridge > slope > valley (Fig. 2), the pattern of net 345 
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CH4 emissions across the catena was opposite (valley >> slope  ridge), especially in 2016 (Fig. 4). The seemingly 346 

counterintuitive relations of substrate concentrations in the bulk soil versus net CH4 emissions can be explained by 347 

modeling the differing redox conditions across soil microsites. Diffusion promoted the availability of the acetate 348 

substrate through more connected soil water films in the wetter valley soils and caused higher gross CH4 production 349 

in 2016, as compared to the relatively drier slope and ridge soils (Figs. S7, S8). In contrast, diffusion of gaseous 350 

methanotrophic substrates (CH4 and O2) was promoted in the air-filled pore spaces in the drier ridge and slope soils 351 

(Fig. S8), resulting in reduced net CH4 emissions for these two topographic positions in 2016 (Fig. 4). Further, reduced 352 

diffusion of O2 in the wetter valley soils decreased gross methanotrophy compared to the slope and ridge soils (Figs. 353 

S7, S8). Consequently, in 2016, net CH4 emissions dominated the valley soils but were minimal in the ridge and slope 354 

soils.    355 

On the other hand, the drought event in 2015 decreased the simulated CH4 emission in the slope and ridge soils by 356 

decreasing H2 production, and both production (Fig. S6) and diffusion of acetate (Fig. S8). The drought increased the 357 

CH4 sink strength of both ridge and slope soils as the observed net CH4 emissions became more negative during the 358 

drought compared to the pre-drought period (Fig. 3). Contributing factors predicted by the model include enhanced 359 

O2 diffusion into the drier ridge and valley soils (Fig. S8), as well as enhanced methanotrophic biomass (Fig. S5). In 360 

the valley, the primary impact of the drought appeared to be due to increased methanotrophy (Fig. S7), since acetate, 361 

H2, and gross CH4 production were predicted to continue unabated (Fig. S6, S7). This suggests that drought enhanced 362 

consumption of atmospheric CH4 in our site, which is consistent with findings from natural droughts and throughfall 363 

exclusion experiments in other wet tropical forest soils (Aronson et al., 2019; Davidson et al., 2004, 2008; Wood and 364 

Silver, 2012).  365 

However, simulation of observed CH4 emission during drought recovery in 2015 required explicit representations of 366 

the complex interaction of the diffusive supply of solute and gases, dynamics of the microbial functional groups, and 367 

the associated acetate-pH feedback loop across the distribution of soil microsites (Fig. 3).  The drought recovery 368 

increased soil moisture which likely prompted anaerobiosis across all topographic locations by significantly reducing 369 

gas diffusivity in a fraction of the simulated microsites (11, 17, and 21 % in ridge, slope, and valley, respectively) 370 

(McNicol and Silver, 2014; Sihi et al., 2020a; Teh et al., 2005). The return to dominantly reducing conditions also 371 

were predicted to stimulate fermentation and the production of acetate (Fig. S6). Enhanced production and diffusion 372 

of acetate during recovery (Fig. S8) triggered growth in the predicted biomass of acetoclastic methanogens (Fig. S5), 373 

which in turn, increased rates of acetoclastic methanogenesis (Fig. S9).  374 

Additionally, acetate is a source of proton and should reduce soil pH (Amaral et al., 1998; Conrad and Klose, 1999; 375 

Jones et al., 2003). Previous studies (Xu et al., 2015; Xu et al., 2010) demonstrated that acetate-driven soil pH 376 

reduction can reduce net CH4 production by as much as 30%, especially in systems with low initial soil pH like our 377 

study site. Given that optimal pH for biological activities peaks near neutral pH, the relatively higher soil pH in the 378 

valley versus ridge and slope soil further enhanced the topographic patterns of CH4 emissions (Conrad et al., 1996; 379 

also see Figs. 2, 3, and 4). Note that the initial soil pH across the landscape was already in the acidic range (Fig. 2), 380 

consequently, the simulated acetate production and concomitant decrease in soil pH during the 2015 drought recovery 381 

further suppressed gross CH4 production in ridge soils in comparison to the valley soils (Figs. S6 and S7). Iron 382 
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reducing bacteria can also suppress CH4 production either by competing with acetoclastic methanogens for acetate 383 

substrate or controlling the flow of acetate to both hydrogenotrophic and acetoclastic methanogens by dissimilatory 384 

iron reduction (Teh et al., 2008). Additionally, Fe reduction can increase soil pH either by proton consumption and 385 

colloid dispersion, while Fe oxidation can lead to more acidic conditions (Hall and Silver, 2013; Thompson et al., 386 

2006). None of these mechanisms are currently represented in the M3D-DAMM model.   387 

Although secondary to acetoclastic methanogenesis, simulated rates of hydrogenotrophic methanogenesis also 388 

increased in anaerobic microsites (Figs. S9, S10), mediated by increased production of H2 and subsequent stimulation 389 

of the biomass of hydrogenotrophic methanogens during the drought recovery in 2015 (Fig. S5). Overall, the absolute 390 

values of simulated gross CH4 production through hydrogenotrophic and acetoclastic pathways (Fig. S9) outweighed 391 

the simulated gross CH4 oxidation rates (Fig. S7), resulting in net soil CH4 emissions across the catena during the 392 

post-drought period (Fig. 3).  393 

Hence, high temporal resolution field-scale measurements of CH4 emissions and soil and porewater chemistry 394 

facilitated evaluation of the combined effects of soil redox conditions (moisture and O2 concentrations) and associated 395 

pH feedbacks on underlying processes occurring across soil microsites, while accounting for variation along the catena 396 

as a result of changing climatic drivers over time. The M3D-DAMM model captured the Birch-type effect by 397 

quantifying the pulses in soil CH4 emissions as a function of increases in soil moisture following a strong drought 398 

(Birch, 1958). Specifically, the model coupled with microsite diffusivity explained CH4 emissions common to wet 399 

valley soils and rare in comparatively drier ridge and slope soils and predicted the net release of CH4 emissions from 400 

all topographic positions following a strong drought.  401 

4.2 Sensitivity analysis   402 

The variance-based sensitivity analysis confirmed the importance of microbial functional groups and their complex 403 

interactions with the surrounding biophysical and chemical environments in controlling CH4 production and oxidation. 404 

For example, the growth and death of acetoclastic methanogens and the relative efficiency of acetoclastic 405 

methanogenesis were the most sensitive parameters (Fig. 8), which is consistent with another modeling effort on CH4 406 

fluxes across the Arctic landscape (Wang et al., 2019). Although from completely different ecosystem types, Wang et 407 

al. (2019) and the present study confirmed the importance of simulating soil topographies and microbial mechanisms 408 

when evaluating the heterogeneities in CH4 fluxes. Representations of both direct (methanogenic substrate) and 409 

indirect (soil pH feedback) effects of acetate may have contributed to higher GSI values for parameters representing 410 

acetoclastic methanogenesis, which is similar to a previous study (Xu et al., 2015). The sensitivity of CH4 emissions 411 

to the parameters representing methanotrophy were secondary to those representing acetoclastic methanogenesis, 412 

which is consistent with the increase in methanotrophic biomass during the drought.  413 

4.3 Other processes   414 

We did not completely reproduce the net emissions of soil CH4 during the 2015 post-drought period across the catena 415 

with the M3D-DAMM model. To capture the full potential of net emissions of CH4 (white shading in Fig. 3) from 416 

sesquioxide-rich soils, future modeling efforts may need to explicitly include the dynamics of redox-sensitive elements 417 
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such as Fe and associated pH feedback under contrasting redox conditions (Barcellos et al., 2018; Bhattacharyya et 418 

al., 2018; Hall and Silver, 2013, 2015; O’Connell et al., 2018; Parfitt et al., 1975; and Silver et al., 1999). Wetting 419 

events can lower soil redox potential and reduce electron acceptors like Fe(III) to Fe(II). This concomitant reduction 420 

of Fe may increase soil pH, especially in anaerobic microsites, which could further increase net emissions of soil CH4 421 

(Tang et al., 2016; Zheng et al., 2019). Accounting for these effects may allow model simulations to better match the 422 

highest observed net CH4 emissions in the post-drought period (Fig. 3).  423 

Additionally, the reduction of Fe(III) to Fe(II) has supported anaerobic CH4 oxidation in other ecosystems (Ettwig et 424 

al., 2016). Within this context, a measurable amount of anaerobic oxidation of CH4 has previously been reported at 425 

our study site (Blazewicz et al., 2012). Additionally, Fe-reducing microorganisms can utilize acetate as a substrate 426 

and thereby compete with methanogens and reduce net methane emissions (Teh et al., 2008). Given the gradient of 427 

Fe in our study site, it is likely that biogeochemical cycling of Fe and CH4 are coupled (O’Connell et al., 2018) which 428 

should be accounted for in future modeling efforts. For example, a modeling study supported the importance of Fe in 429 

simulating CH4 cycling in an Arctic soil (Tang et al., 2016). To that end, building a comprehensive framework that 430 

also includes Fe biogeochemistry will afford greater confidence in projected CH4 emissions from wet tropical forests 431 

under future climatic conditions (Bonan et al., 2008; Pachauri et al., 2014; Xu et al., 2016). 432 

5 Conclusions   433 

High-frequency CH4 emission measurements coupled with real-time soil chemical measurements identified spatial 434 

and temporal variations affecting CH4 production and oxidation in wet tropical forest soils of Puerto Rico. Overall, 435 

contrasting patterns of soil moisture between ridge and valley soils played an instrumental role in governing net CH4 436 

emissions. For example, consistently greater soil moisture likely favored methanogenesis by lowering the availability 437 

of O2 in valley soils compared to ridgetop soils, especially in microsites with high soil moisture and soil C content. 438 

However, soil porewater chemistry, particularly the concentrations of acetate and associated soil pH influenced the 439 

pattern of net emissions of CH4 across the catena (valley > slope > ridge) during wetting after the 2015 drought. Thus, 440 

our results provide compelling evidence of the importance of both hot spots and hot moments in generating and 441 

mediating CH4 emissions in wet tropical forest soils. A microbial functional group-based model coupled with a 442 

diffusivity module and consideration of soil microsites adequately reproduced both the spatial and temporal dynamics 443 

of soil CH4 emissions, although mechanisms involving Fe biogeochemistry were neglected.     444 

This study suggests that representing the microbial mechanisms and the interactions of microbial functional groups 445 

with the soil biophysical and chemical environment across soil microsites is critical for modeling CH4 production and 446 

consumption. To that end, explicit consideration of these underlying mechanisms improved predictions of CH4 447 

dynamics in response to regional climatic events and provided insight into differential dynamics of solute and gas 448 

diffusion, different microbial functions, and gross CH4 production and oxidation as a function of topography. Hence, 449 

we contribute to the ongoing development and improvements of Earth system and process models to better simulate 450 

microbial roles in CH4 cycling at regional and global scales. However, observational data concerning the activities of 451 

different soil microbial functional groups is still needed to confirm the mechanisms proposed here. Future studies 452 

should integrate geochemical and microbiological information relevant for oscillatory redox conditions in wet tropical 453 
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forests, especially those related to the redox-sensitive elements to build a comprehensive framework for modeling 454 

tropical soil CH4 emissions. 455 

Code and data availability   456 

Meteorological data (http://criticalzone.org/luquillo/data/dataset/4723/) are available from the Luquillo CZO 457 

repository. 2015 greenhouse gas fluxes (DOI: 10.6073/pasta/316b68dd254e353e1acfb16d92bac2dc) are available 458 

from the Luquillo LTER repository. The 2016 greenhouse gas fluxes (DOI: 10.15485/1632882), soil chemistry (DOI: 459 

10.15485/1618870), and rhizon lysimeter data (DOI: 10.15485/1618869) are available from ESS-DIVE repository. R 460 

scripts used for this modeling exercise are archived at the following Zenodo repository (DOI: 461 

10.5281/zenodo.3890562).      462 
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Table 1: Fitted values of M3D-DAMM model parameters. 659 

 660 

Initial values of model parameters were collected from literature (“Source”).  Also see Xu et al. (2015) for detailed information on 661 
model parameters. 662 
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 663 

Figure 1: Conceptual figure of the modelling approach. Top panel (a) shows the model representation of soil microsite 664 
distribution (modified from Sihi et al., 2020, also see Eq. 13). Different shades indicate substrate concentration [Si], soil 665 
moisture (SoilMi), diffusion (Diffi) of solutes and gases, production (Prodi) and oxidation (Oxi) processes at each microsite. 666 
Bottom panel (b) is the schematic of the microbial functional group-based model coupled with a diffusivity module 667 
(Microbial Model for Methane Dynamics-Dual Arrhenius and Michaelis Menten, M3D-DAMM) for simulating soil 668 
methane (CH4) dynamics in field soils (Modified from Xu et al., 2015), where SOM = soil organic matter, CO2 = carbon 669 
dioxide, DOC = dissolved organic carbon, H+ is the hydronium ion, and H2 = dihydrogen molecule. 670 
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Figure 2: Soil and porewater chemistry (dissolved organic carbon [DOC] (a), acetate (b), and pH (c)) along the ridge-slope-

valley topographic gradient. 
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Figure 3: Temporal dynamics of observed meteorological drivers (soil temperature (a-c), soil moisture (d-f), soil oxygen 675 
(g-i)) and net methane emissions (j-l) for 2015 (Data are taken from O'Connell et al., 2018). For methane emissions, 

symbols represent observed data and lines represent model simulations. Dark gray, medium gray, light gray, and white 

shading represent pre-drought, drought, drought recovery, and post drought events (O’Connell et al., 2018). 
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Figure 4: Temporal dynamics of observed meteorological drivers (soil temperature (a-c), soil moisture (d-f), soil oxygen (g-680 
i)) and net methane emissions (j-l) for 2016. For methane emissions, symbols represent observed data and lines represent 

model simulations.    
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Figure 5: Relation between soil meteorology and methane emissions for 2015 (a) and 2016 (b). SoilM, SoilT, O2, CH4 685 
represent soil moisture, soil temperature, oxygen, and methane, respectively. Numbers represent adjusted Holm correlation 

coefficients, and numbers with "X" indicate a non-significant correlation at p < 0.05.  
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Figure 6: Observed versus simulated methane (CH4) emissions and model residuals for 2015 (a, b) and 2016 (c, d). 
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Figure 7: Rates of gross methane (CH4) production (a, b), oxidation (c, d), and net flux (e, f) across simulated soil microsites. 

Day of year 200 and 345 represent drought and post-drought recovery, respectively (see medium gray and white shading in 

Fig. 3).  
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Figure 8: Global sensitivity indices of M3D-DAMM model parameters (defined in Table 1). Gray, yellow, and blue colors 

represent parameters for acetoclastic methanogenesis, hydrogenotrophic methanogenesis, and methanotrophy, respectively. 
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